Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 532, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637360

RESUMO

BACKGROUND: Doxorubicin is an effective antineoplastic agent but has limited clinical application because of its cumulative toxicities, including cardiotoxicity. Cardiotoxicity causes lipid peroxidation, genetic impairment, oxidative stress, inhibition of autophagy, and disruption of calcium homeostasis. Doxorubicin-induced cardiotoxicity is frequently tried to be mitigated by phytochemicals, which are derived from plants and possess antioxidant, anti-inflammatory, and anti-apoptotic properties. Arbutin, a natural antioxidant found in the leaves of the bearberry plant, has numerous pharmacological benefits, including antioxidant, anti-bacterial, anti-hyperglycemic, anti-inflammatory, and anti-tumor activity. METHODS AND RESULTS: The study involved male Wistar rats divided into three groups: a control group, a group treated with doxorubicin (20 mg/kg) to induce cardiac toxicity, a group treated with arbutin (100 mg/kg) daily for two weeks before doxorubicin administration. After treatment, plasma and heart tissue samples were collected for analysis. The samples were evaluated for oxidative stress parameters, including superoxide dismutase, malondialdehyde, and catalase, as well as for cardiac biomarkers, including CK, CK-MB, and LDH. The heart tissues were also analyzed using molecular (TNF-α, IL-1ß and Caspase 3), histopathological and immunohistochemical methods (8-OHDG, 4 Hydroxynonenal, and dityrosine). The results showed that arbutin treatment was protective against doxorubicin-induced oxidative damage by increasing SOD and CAT activity and decreasing MDA level. Arbutin treatment was similarly able to reverse the inflammatory response caused by doxorubicin by reducing TNF-α and IL-1ß levels and also reverse the apoptosis by decreasing caspase-3 levels. It was able to prevent doxorubicin-induced cardiac damage by reducing cardiac biomarkers CK, CK-MB and LDH levels. In addition to all these results, histopathological analyzes also show that arbutin may be beneficial against the damage caused by doxorubicin on heart tissue. CONCLUSION: The study suggests that arbutin has the potential to be used to mitigate doxorubicin-induced cardiotoxicity in cancer patients.


Assuntos
Antioxidantes , Cardiotoxicidade , Humanos , Ratos , Animais , Antioxidantes/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Arbutina/farmacologia , Arbutina/metabolismo , Arbutina/uso terapêutico , Miocárdio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Apoptose , Biomarcadores/metabolismo
2.
Biomedicines ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672280

RESUMO

BACKGROUND: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. METHODS: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. FINDINGS: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. INTERPRETATION: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3707-3721, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37306715

RESUMO

In this study, we determined the therapeutic effect of parthenolide (PTL), the active component of Tanacetum parthenium, on neuropathic pain caused by paclitaxel (PTX), a chemotherapeutic drug frequently used in cancer treatment, at the gene and protein levels. To this end, 6 groups were formed: control, PTX, sham, 1 mg/PTL, 2 mg/kg PTL, and 4 mg/kg PTL. Pain formation was tested by Randall-Selitto analgesiometry and locomotor activity behavioral analysis. Then, PTL treatment was performed for 14 days. After the last dose of PTL was taken, Hcn2, Trpa1, Scn9a, and Kcns1 gene expressions were measured in rat brain (cerebral cortex/CTX) tissues. In addition, changes in the levels of SCN9A and KCNS1 proteins were determined by immunohistochemical analysis. Histopathological hematoxylin-eosin staining was also performed to investigate the effect of PTL in treating tissue damage on neuropathic pain caused by PTX treatment. When the obtained data were analyzed, pain threshold and locomotor activity decreased in PTX and sham groups and increased with PTL treatment. In addition, it was observed that the expression of the Hcn2, Trpa1, and Scn9a genes decreased while the Kcns1 gene expression increased. When protein levels were examined, it was determined that SCN9A protein expression decreased and the KCNS1 protein level increased. It was determined that PTL treatment also improved PTX-induced tissue damage. The results of this study demonstrate that non-opioid PTL is an effective therapeutic agent in the treatment of chemotherapy-induced neuropathic pain, especially when used at a dose of 4 mg/kg acting on sodium and potassium channels.


Assuntos
Neuralgia , Sesquiterpenos , Ratos , Animais , Paclitaxel/toxicidade , Analgésicos/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
4.
Nutrients ; 15(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36771285

RESUMO

Liver pyruvate kinase (PKL) has recently emerged as a new target for non-alcoholic fatty liver disease (NAFLD), and inhibitors of this enzyme could represent a new therapeutic option. However, this breakthrough is complicated by selectivity issues since pyruvate kinase exists in four different isoforms. In this work, we report that ellagic acid (EA) and its derivatives, present in numerous fruits and vegetables, can inhibit PKL potently and selectively. Several polyphenolic analogues of EA were synthesized and tested to identify the chemical features responsible for the desired activity. Molecular modelling studies suggested that this inhibition is related to the stabilization of the PKL inactive state. This unique inhibition mechanism could potentially herald the development of new therapeutics for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piruvato Quinase/metabolismo , Ácido Elágico/química , Fígado/metabolismo
5.
Transl Neurodegener ; 12(1): 4, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703196

RESUMO

BACKGROUND: Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. METHODS: Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. RESULTS: We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. CONCLUSION: Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131.


Assuntos
Doença de Alzheimer , Animais , Ratos , Doença de Alzheimer/metabolismo , Resultado do Tratamento , Cognição , Método Duplo-Cego
6.
Drug Chem Toxicol ; 46(1): 69-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34894956

RESUMO

The aim of this study was to investigate the molecular, biochemical, and histopathological effects of bromelain, which has antioxidant and anti-inflammatory properties, against cisplatin-induced ocular toxicity. The groups were designed as (1) Control, (2) Cisplatin (7 mg/kg, intraperitoneally), (3) Cisplatin + Bromelain (50 mg/kg, orally for 14 consecutive days), (4) Cisplatin + Bromelain (100 mg/kg, orally for 14 consecutive days). The activity of total antioxidant capacity (TAC) and total oxidant status (TOS) and levels of reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1ß (IL-1ß), IL-10, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and 8-OHdG were measured in ocular tissue. The mRNA expression of NF-κB and Caspase-3 was also evaluated. Also, ocular sections were evaluated histopathologically. Bromelain demonstrated a dose-dependent protective effect in cisplatin-induced toxicity by regulating oxidative stress, inflammation, and tissue damage. Our results suggested that bromelain may be a potential adjuvant that can protect the eye from cisplatin-induced toxicity.


Assuntos
Antioxidantes , Cisplatino , Humanos , Cisplatino/toxicidade , Antioxidantes/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Bromelaínas/toxicidade , Bromelaínas/metabolismo , Neuropatia Óptica Tóxica , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo
7.
Bone Joint Res ; 11(12): 854-861, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36458454

RESUMO

AIMS: Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. METHODS: Human primary tenocytes were cultured in palmitate (400 µM) and palmitate plus DEL-1 (0 to 2 µg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay. RESULTS: We found that treatment with DEL-1 suppressed palmitate-induced inflammation, ER stress, and apoptosis in human primary tenocytes. DEL-1 treatment augmented LC3 conversion and p62 degradation as well as AMPK phosphorylation. Moreover, small interfering RNA for AMPK or 3-methyladenine (3-MA), an autophagy inhibitor, abolished the suppressive effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes. Similar to DEL-1, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, also attenuated palmitate-induced inflammation, ER stress, and apoptosis in tenocytes, which 3-MA reversed. CONCLUSION: These results revealed that DEL-1 suppresses inflammation and ER stress, thereby attenuating tenocyte apoptosis through AMPK/autophagy-mediated signalling. Thus, regular exercise or administration of DEL-1 may directly contribute to improving tendinitis exacerbated by obesity and insulin resistance.Cite this article: Bone Joint Res 2022;11(12):854-861.

8.
Front Nutr ; 9: 981889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159454

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles in the brain accompanied by synaptic dysfunction and neurodegeneration. No effective treatment has been found to slow the progression of the disease. Therapeutic studies using experimental animal models have therefore become very important. Therefore, this study aimed to investigate the possible neuroprotective effect of D-cycloserine and L-serine against aluminum chloride (AlCl3)-induced AD in rats. Administration of AlCl3 for 28 days caused oxidative stress and neurodegeneration compared to the control group. In addition, we found that aluminum decreases α-secretase activity while increasing ß-secretase and γ-secretase activities by molecular genetic analysis. D-cycloserine and L-serine application resulted in an improvement in neurodegeneration and oxidative damage caused by aluminum toxicity. It is believed that the results of this study will contribute to the synthesis of new compounds with improved potential against AlCl3-induced neurodegeneration, cognitive impairment, and drug development research.

9.
Cutan Ocul Toxicol ; 40(3): 214-220, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34180746

RESUMO

Aim: Cisplatin is a widely used and highly effective anti-cancer agent and one of the limiting side effects of cisplatin is ocular toxicity. Achillea millefolium, also known as yarrow, is a plant that has been used for many years to treat various health problems including chemotherapy-related toxicities. Methods: The present investigation was designed to evaluate the biochemical, molecular and histopathological effects of Achillea Millefolium on cisplatin-induced oxidative and inflammatory ocular damage in rats. Twenty-four adult male rats were assigned randomly to four groups (n = 6) as (1) control, (2) cisplatin (7 mg/kg, intraperitoneally), (3) Cisplatin + Achillea millefolium (200 mg/kg, orally for 14 consecutive days), (4) Cisplatin + Achillea millefolium (400 mg/kg, orally for 14 consecutive days). Levels of total antioxidant capacity and total oxidant status, SOD, MDA, IL-1ß, and IL-10 were measured in ocular tissue. The mRNA expressions of TNF-α, nuclear factor kappa B and Caspase-3 were evaluated. Also, ocular sections were evaluated histopathologically.Results: Achillea Millefolium upregulated ocular antioxidant enzymes and downregulated inflammation. The SOD activity and total antioxidant capacity increased whereas total oxidant status and MDA levels decreased significantly at high dose group. High dose Achillea millefolium treatment reduced the IL-1ß concentrations, whereas IL-10 levels increased significantly in that group. Moreover, we observed that Achillea millefolium restored ocular histopathological structure and significantly suppressed apoptosis by reducing the expression of Caspase-3.Conclusion: Collectively, our results suggest that Achillea millefolium have protective effects against cisplatin-induced ocular toxicity and is a promising adjuvant therapy with the potential to prevent cisplatin related ocular toxicity.


Assuntos
Achillea/química , Antioxidantes/farmacologia , Cisplatino/efeitos adversos , Doenças da Córnea/prevenção & controle , Extratos Vegetais/farmacologia , Administração Oral , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Córnea/efeitos dos fármacos , Córnea/patologia , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Ratos
10.
Andrologia ; 53(5): e14028, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33650701

RESUMO

The aim of this study was to investigate the effects of Achillea millefolium extract in paclitaxel-induced testicular toxicity in rats. The groups were designed as (1) control, (2) paclitaxel (8 mg/kg, intraperitoneally), (3) paclitaxel (8 mg/kg, intraperitoneally) + Achillea millefolium (200 mg/kg, orally for 14 consecutive days) and (4) paclitaxel (8 mg/kg, intraperitoneally) + Achillea millefolium (400 mg/kg, orally for 14 consecutive days). Serum levels of testosterone, luteinising hormone and follicle-stimulating hormone, as well as total antioxidant capacity and total oxidant status were measured one day after receiving the last dose of Achillea millefolium extract. Testicular superoxide dismutase activity, malondialdehyde, tumour necrosis factor alpha and interleukin-1ß levels, the expressions of nuclear factor kappa B and caspase-3 were evaluated. In addition, testicular sections were evaluated histopathologically and 8-hydroxy-2'-deoxyguanosine was detected immunohistochemically. Achillea millefolium improved the levels of luteinising hormone, follicle-stimulating hormone and testosterone, upregulated testicular antioxidant enzymes and downregulated inflammation. Furthermore, we observed that Achillea millefolium restored testicular histopathological structure and significantly suppressed oxidative DNA damage and apoptosis by reducing the expression of caspase-3. Taken together, our results suggest that Achillea millefolium has protective effects against paclitaxel-induced testicular toxicity and is a promising natural product with the potential to improve male fertility.


Assuntos
Achillea , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Masculino , Estresse Oxidativo , Paclitaxel , Extratos Vegetais/farmacologia , Ratos , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA